Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JTCVS Open ; 18: 91-103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690428

ABSTRACT

Objective: Donor hearts procured after circulatory death (DCD) may significantly increase the number of hearts available for transplantation. The purpose of this study was to analyze current DCD and brain-dead donor (DBD) heart transplantation rates and characterize organ refusal using the most up-to-date United Network for Organ Sharing (UNOS) and Organ Procurement and Transplantation Network data. Methods: We analyzed UNOS and Organ Procurement and Transplantation Network DBD and DCD candidate, transplantation, and demographic data from 2020 through 2022 and 2022 refusal code data to characterize DCD heart use and refusal. Subanalyses were performed to characterize DCD donor demographics and regional transplantation rate variance. Results: DCD hearts were declined 3.37 times more often than DBD hearts. The most frequently used code for DCD refusal was neurologic function, related to concerns of a prolonged dying process and organ preservation. In 2022, 92% (1329/1452) of all DCD refusals were attributed to neurologic function. When compared with DBD, DCD donor hearts were more frequently declined as the result of prolonged warm ischemic time (odds ratio, 5.65; 95% confidence interval, 4.07-7.86) and other concerns over organ preservation (odds ratio, 4.06; 95% confidence interval, 3.33-4.94). Transplantation rate variation was observed between demographic groups and UNOS regions. DCD transplantation rates are currently experiencing second order polynomial growth. Conclusions: DCD donor hearts are declined more frequently than DBD. DCD heart refusals result from concerns over a prolonged dying process and organ preservation. Heart transplantation rates may be substantially improved by ex situ hemodynamic assessment, adoption of normothermic regional perfusion guidelines, and quality initiatives.

2.
Front Cardiovasc Med ; 11: 1325169, 2024.
Article in English | MEDLINE | ID: mdl-38638886

ABSTRACT

Cold static storage (CSS) for up to 6 h is the gold standard in heart preservation. Although some hearts stored over 6 h have been transplanted, longer CSS times have increased posttransplant morbimortality. Transmedics® Organ Care System (OCS™) is the only FDA-approved commercial system that provides an alternative to CSS using normothermic ex situ heart perfusion (NEHP) in resting mode with aortic perfusion (Langendorff method). However, it is also limited to 6 h and lacks an objective assessment of cardiac function. Developing a system that can perfuse hearts under NEHP conditions for >24 h can facilitate organ rehabilitation, expansion of the donor pool, and objective functional evaluation. The Extracorporeal Life Support Laboratory at the University of Michigan has worked to prolong NEHP to >24 h with an objective assessment of heart viability during NEHP. An NEHP system was developed for aortic (Langendorff) perfusion using a blood-derived perfusate (leukocyte/thrombocyte-depleted blood). Porcine hearts (n = 42) of different sizes (6-55 kg) were divided into five groups and studied during 24 h NEHP with various interventions in three piglets (small-size) heart groups: (1) Control NEHP without interventions (n = 15); (2) NEHP + plasma exchange (n = 5); (3) NEHP + hemofiltration (n = 10) and two adult-size (juvenile pigs) heart groups (to demonstrate the support of larger hearts); (4) NEHP + hemofiltration (n = 5); and (5) NEHP with intermittent left atrial (iLA) perfusion (n = 7). All hearts with NEHP + interventions (n = 27) were successfully perfused for 24 h, whereas 14 (93.3%) control hearts failed between 10 and 21 h, and 1 control heart (6.6%) lasted 24 h. Hearts in the piglet hemofiltration and plasma exchange groups performed better than those in the control group. The larger hearts in the iLA perfusion group (n = 7) allowed for real-time heart functional assessment and remained stable throughout the 24 h of NEHP. These results demonstrate that heart preservation for 24 h is feasible with our NEHP perfusion technique. Increasing the preservation period beyond 24 h, infection control, and nutritional support all need optimization. This proves the concept that NEHP has the potential to increase the organ pool by (1) considering previously discarded hearts; (2) performing an objective assessment of heart function; (3) increasing the donor/recipient distance; and (4) developing heart-specific perfusion therapies.

3.
Transplantation ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411562

ABSTRACT

BACKGROUND: Cold static storage and normothermic ex vivo heart perfusion are routinely limited to 6 h. This report describes intermittent left atrial (LA) perfusion that allows cardiac functional assessment in a working heart mode. METHODS: Using our adult porcine model, general anesthesia was induced and a complete cardiectomy was performed following cardioplegic arrest. Back-table instrumentation was completed and normothermic ex vivo heart perfusion (NEHP) was initiated in a nonworking heart mode (Langendorff). After 1 h of resuscitation and recovery, LA perfusion was initiated and the heart was transitioned to a coronary flow-only working heart mode for 30 min. Baseline working heart parameters were documented and the heart was returned to nonworking mode. Working heart assessments were performed for 30 min every 6 h for 24 h. RESULTS: Twenty-four-hour NEHP on 9 consecutive hearts (280 ±â€…42.1 g) was successful and no significant differences were found between working heart parameters at baseline and after 24 h of perfusion. There was no difference between initial and final measurements of LA mean pressures (5.0 ±â€…3.1 versus 9.0 ±â€…6.5 mm Hg, P = 0.22), left ventricular systolic pressures (44.3 ±â€…7.2 versus 39.1 ±â€…9.0 mm Hg, P = 0.13), mean aortic pressures (30.9 ±â€…5.8 versus 28.1 ±â€…8.1 mm Hg, P = 0.37), and coronary resistance (0.174 ±â€…0.046 versus 0.173 ±â€…0.066 mL/min/g, P = 0.90). There were also no significant differences between lactate (2.4 ±â€…0.5 versus 2.6 ±â€…0.4 mmol/L, P = 0.17) and glucose (173 ±â€…75 versus 156 ±â€…70 mg/dL, P = 0.37). CONCLUSIONS: A novel model using intermittent LA perfusion to create a coronary flow-only working heart mode for assessment of ex vivo cardiac function has been successfully developed.

4.
J Pediatr Surg ; 59(1): 103-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858393

ABSTRACT

BACKGROUND: Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS: Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS: Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION: The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.


Subject(s)
Extracorporeal Membrane Oxygenation , Nitric Oxide , Animals , Humans , Sheep , Child , Methemoglobin , Lung , Hemodynamics , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
5.
Transplant Proc ; 55(9): 2241-2246, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783593

ABSTRACT

BACKGROUND: Historically, cardiac transplantation relied on cold static storage at 5 °C for ex vivo myocardial preservation. Currently, machine perfusion is the standard of care at many transplant centers. These storage methods are limited to 12 hours. We sought to evaluate the efficacy of hemofiltration and filtrate replacement in adult porcine hearts using normothermic heart perfusion (NEVHP) for 24 hours. METHODS: We performed 24-hour NEVHP on 5 consecutive hearts. After anesthetic induction, sternotomy, cardioplegia administration, explantation, and back-table instrumentation, NEVHP was initiated in beating, unloaded mode. After 1 hour, plasma exchange was performed, and hemofiltration was initiated. Heart function parameters and arterial blood gasses were obtained hourly. RESULTS: All hearts (n = 5) were viable at the 24-hour mark. The average left ventricular systolic pressure at the beginning of the prep was 36.6 ± 7.9 mm Hg compared with 27 ± 5.5 mm Hg at the end. Coronary resistance at the beginning of prep was 0.79 ± 0.10 mm Hg/L/min and 0.93 ± 0.28 mm Hg/L/min at the end. Glucose levels averaged 223 ± 13.9 mg/dL, and the lactate average at the termination of prep was 2.6 ± 0.3 mmol/L. CONCLUSIONS: We successfully perfused adult porcine hearts at normothermic temperatures for 24 hours with results comparable to our pediatric porcine heart model. The next step in our research is NEVHP evaluation in a working mode using left atrial perfusion.


Subject(s)
Heart Transplantation , Hemofiltration , Humans , Adult , Child , Swine , Animals , Heart , Heart Transplantation/methods , Perfusion/methods , Lactic Acid , Organ Preservation/methods
6.
J Orthop Surg (Hong Kong) ; 26(3): 2309499018808356, 2018.
Article in English | MEDLINE | ID: mdl-30369289

ABSTRACT

Polyethylene (PE) remains the gold standard for the articulating surface in hip and knee arthroplasty. To increase arthroplasty longevity and improve wear resistance, newer versions of PE have been designed with resultantly different wear properties. Highly cross-linked polyethylene (HXLPE) is used in total hip arthroplasty with excellent outcomes; however, its use in total knee arthroplasty (TKA) remains conflicting. This review summarizes biomechanical and wear properties, clinical outcomes, and cost of polyethylene inserts in TKA. Simulation studies have convincingly shown decreased wear and oxidation rates with HXLPE when compared to conventional polyethylene (CPE). Registry results have been conflicting, and short- to midterm clinical studies have not demonstrated a significant difference between HXLPE and CPE. The cost of HXLPE inserts is higher than CPE. Long-term clinical data are lacking and further studies are warranted to evaluate the role of HXLPE in TKA.


Subject(s)
Arthroplasty, Replacement, Knee/methods , Materials Testing/methods , Polyethylene , Registries , Humans , Prosthesis Design , Reproducibility of Results
7.
Front Physiol ; 4: 121, 2013.
Article in English | MEDLINE | ID: mdl-23755017

ABSTRACT

HtrA1, Ddr-2, and Mmp-13 are reliable biomarkers for osteoarthritis (OA), yet the exact mechanism for the upregulation of HtrA-1 is unknown. Some have shown that chondrocyte hypertrophy is associated with early indicators of inflammation including TGF-ß and the Receptor for Advanced Glycation End-products (RAGE). To examine the correlation of inflammation with the expression of biomarkers in OA, we performed right knee destabilization surgery on 4-week-old-wild type and RAGE knock-out (KO) mice. We assayed for HtrA-1, TGF-ß1, Mmp-13, and Ddr-2 in articular cartilage at 3, 7, 14, and 28 days post-surgery by immunohistochemistry on left and right knee joints. RAGE KO and wild type mice both showed staining for key OA biomarkers. However, RAGE KO mice were significantly protected against OA compared to controls. We observed a difference in the total number of chondrocytes and percentage of chondrocytes staining positive for OA biomarkers between RAGE KO and control mice. The percentage of cells staining for OA biomarkers correlated with severity of cartilage degradation. Our results indicate that the absence of RAGE did protect against the development of advanced OA. We conclude that HtrA-1 plays a role in lowering TGF-ß1 expression in the process of making articular cartilage vulnerable to damage associated with OA progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...